Fast Balanced Partitioning Is Hard Even on Grids and Trees
نویسنده
چکیده
Two kinds of approximation algorithms exist for the k-BALANCED PARTITIONING problem: those that are fast but compute unsatisfactory approximation ratios, and those that guarantee high quality ratios but are slow. In this article we prove that this tradeoff between running time and solution quality is unavoidable. For the problem a minimum number of edges in a graph need to be found that, when cut, partition the vertices into k equal-sized sets. We develop a general reduction which identifies some sufficient conditions on the considered graph class in order to prove the hardness of the problem. We focus on two combinatorially simple but very different classes, namely trees and solid grid graphs. The latter are finite connected subgraphs of the infinite two-dimensional grid without holes. We apply the reduction to show that for solid grid graphs it is NP-hard to approximate the optimum number of cut edges within any satisfactory ratio. We also consider solutions in which the sets may deviate from being equalsized. Our reduction is applied to grids and trees to prove that no fully polynomial time algorithm exists that computes solutions in which the sets are arbitrarily close to equal-sized. This is true even if the number of edges cut is allowed to increase when the limit on the set sizes decreases. These are the first bicriteria inapproximability results for the k-BALANCED PARTITIONING problem.
منابع مشابه
On the Average Height of b-Balanced Ordered Trees
An ordered tree with height h is b-balanced if all its leaves have a level l with h − b <= l <= h, where at least one leaf has a level equal to h − b. For large n, we shall compute asymptotic equivalents to the number of all b-balanced ordered trees with n nodes and of all such trees with height h. Furthermore, assuming that all b-balanced ordered trees with n nodes are equally likely, we shall...
متن کاملThe Complexity of Tree Partitioning
Given a tree T on n vertices, and k, b, s1, . . . , sb ∈ N, the Tree Partitioning problem asks if at most k edges can be removed from T so that the resulting components can be grouped into b groups such that the number of vertices in group i is si, for i = 1, . . . , b. The case when s1 = · · · = sb = n/b, referred to as the Balanced Tree Partitioning problem, was shown to be NP-complete for tr...
متن کاملOptimal Self-healing of Smart Distribution Grids Based on Spanning Trees to Improve System Reliability
In this paper, a self-healing approach for smart distribution network is presented based on Graph theory and cut sets. In the proposed Graph theory based approach, the upstream grid and all the existing microgrids are modeled as a common node after fault occurrence. Thereafter, the maneuvering lines which are in the cut sets are selected as the recovery path for alternatives networks by making ...
متن کاملNew Combinatorial Properties and Algorithms for AVL Trees
In this thesis, new properties of AVL trees and a new partitioning of binary search trees named core partitioning scheme are discussed, this scheme is applied to three binary search trees namely AVL trees, weight-balanced trees, and plain binary search trees. We introduce the core partitioning scheme, which maintains a balanced search tree as a dynamic collection of complete balanced binary tre...
متن کاملBalanced Aspect Ratio Trees Revisited
Spatial databases support a variety of geometric queries on point data such as range searches, nearest neighbor searches, etc. Balanced Aspect Ratio (BAR) trees are hierarchical space decomposition structures that are general-purpose and space-efficient, and, in addition, enjoy a worst case performance poly-logarithmic in the number of points for approximate queries. They maintain limits on the...
متن کامل